8 research outputs found

    East Meets West: A Musical Analysis of Chinese Sights and Sounds, by Yuankai Bao

    Get PDF
    In the wake of the Chinese Cultural Revolution (1966-76) and with China’s new “Open Door” policy toward Western culture and Western music, Chinese composers have adapted Western compositional techniques. The new generation of Chinese composers have expressed in various ways of their research to the heritage of Western composers. Yuankai Bao is one of the new generations of Chinese composers. The topic of this paper is the integration of Chinese and Western compositional techniques in Chinese folk songs. The purpose of this research is to find out how Yuankai Bao connects Chinese pentatonic scale to Western harmony, and how he helps develop Chinese new music and applies some characteristics of Western music to his composition, Chinese Sights and Sounds-24 Pieces by Themes on Chinese Folk Tunes. This research will facilitate a better understanding to Western performers of Chinese folk songs and piano music and assist in the achievement of a more authentic performance

    Excavation of diagnostic biomarkers and construction of prognostic model for clear cell renal cell carcinoma based on urine proteomics

    Get PDF
    PurposeClear cell renal cell carcinoma (ccRCC) is the most common pathology type in kidney cancer. However, the prognosis of advanced ccRCC is unsatisfactory. Thus, early diagnosis becomes one of the most important research priorities of ccRCC. However, currently available studies about ccRCC lack urine-related further studies. In this study, we applied proteomics to search urinary biomarkers to assist early diagnosis of ccRCC. In addition, we constructed a prognostic model to assist judge patients’ prognosis.Materials and methodsUrine which was used to perform 4D label-free quantitative proteomics was collected from 12 ccRCC patients and 11 non-tumor patients with no urinary system diseases. The urine of 12 patients with ccRCC confirmed by pathological examination after surgery was collected before operatoin. Bioinformatics analysis was used to describe the urinary proteomics landscape of these patients with ccRCC. The top ten proteins with the highest expression content were selected as the basis for subsequent validation. Urine from 46 ccRCC patients and 45 control patients were collected to use for verification by enzyme linked immunosorbent assay (ELISA). In order to assess the prognostic value of urine proteomics, a prognostic model was constructed by COX regression analysis on the intersection of RNA-sequencing data in The Cancer Genome Atlas (TCGA) database and our urine proteomic data.Results133 proteins differentially expressed in the urinary samples were found and 85 proteins (Fold Change, FC>1.5) were identified up-regulated while 48 down-regulated (FC<0.5). Top 10 proteins including S100A14, PKHD1L1, FABP4, ITIH2, C3, C8G, C2, ATF6, ANGPTL6, F13B were performed ELISA to verify. The results showed that PKHD1L1, ANGPTL6, FABP4 and C3 were statistically significant (P<0.05). We performed multivariate logistic regression analysis and plotted a nomogram. Receiver operating characteristic (ROC) curve indicted that the diagnostic efficiency of combined indicators is satisfactory (Aare under curve, AUC=0.835). Furthermore, the prognostic value of the urine proteomics was explored through the intersection between urine proteomics and TCGA RNA-seq data. Thus, COX regression analysis showed that VSIG4, HLA-DRA, SERPINF1, and IGLV2-23 were statistically significant (P<0.05).ConclusionOur study indicated that the application of urine proteomics to explore diagnostic biomarkers and to construct prognostic models of renal clear cell carcinoma is of certain clinical value. PKHD1L1, ANGPTL6, FABP4 and C3 can assist to diagnose ccRCC. The prognostic model constituted of VSIG4, HLA-DRA, SERPINF1, and IGLV2-23 can significantly predict the prognosis of ccRCC patients, but this still needs more clinical trials to verify

    Plasma-Exposure-Induced Mobility Enhancement of LiTFSI-Doped Spiro-OMeTAD Hole Transport Layer in Perovskite Solar Cells and Its Impact on Device Performance

    No full text
    2,2′,7,7′-Tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-OMeTAD) film currently prevails as hole transport layer (HTL) employed in perovskite solar cells (PSCs). However, the standard preparation method for spin-coated, Lithium bis(trifluoromethylsulfony) imide (LiTFSI)-doped, spiro-OMeTAD HTL depends on a time-consuming and uncontrolled oxidation process to gain desirable electrical conductivity to favor device operation. Our previous work demonstrated that ~10 s oxygen or oxygen containing gas discharge plasma exposure can oxidize spiro-OMeTAD HTL effectively and make PSCs work well. In this communication, hole-only devices are fabricated and in-situ current density-voltage measurements are performed to investigate the change in hole mobility of LiTFSI-doped spiro-OMeTAD films under plasma exposure. The results reveal that hole mobility values can be increased averagely from ~5.0 × 10−5 cm2V−1s−1 to 7.89 × 10−4 cm2V−1s−1 with 7 s O2 plasma exposure, and 9.33 × 10−4 cm2V−1s−1 with 9 s O2/Ar plasma exposure. The effects on the photovoltaic performance of complete PSC devices are examined, and optical emission spectroscopy (OES) is used for a diagnostic to explain the different exposure effects of O2 and O2/Ar plasma. High efficiency, fine controllability and good compatibility with current plasma surface cleaning techniques may make this method an important step towards the future commercialization of photovoltaic technologies employing spiro-OMeTAD hole transport material

    A disease-causing intronic point mutation C19G alters tau exon 10 splicing via RNA secondary structure rearrangement

    No full text
    Alternative splicing of MAPT cassette exon 10 produces tau isoforms with four microtubule-binding repeat domains (4R) upon exon inclusion or three repeats (3R) upon exon skipping. In human neurons, deviations from the ∼1:1 physiological 4R:3R ratio lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). Certain FTDP-17-associated mutations affect a regulatory hairpin that sequesters the exon 10 5′ splice site (5′ss, located at the exon 10–intron 10 junction). These mutations tend to increase the 4R:3R ratio by destabilizing the hairpin, thereby improving 5′ss recognition by U1 snRNP. Interestingly, a single C-to-G mutation at the 19th nucleotide in intron 10 (C19G or +19G) decreases the level of exon 10 inclusion significantly from 56% to 1%, despite the disruption of a G-C base pair in the bottom stem of the hairpin. Here, we show by biophysical characterization, including thermal melting, fluorescence, and single-molecule mechanical unfolding using optical tweezers, that the +19G mutation alters the structure of the bottom stem, resulting in the formation of a new bottom stem with enhanced stability. The cell culture alternative splicing patterns of a series of minigenes reveal that the splicing activities of the mutants with destabilizing mutations on the top stem can be compensated in a position-dependent manner by the +19G mutation in the bottom stem. We observed an excellent correlation between the level of exon 10 inclusion and the rate of mechanical unfolding at 10 pN, indicating that the unfolding of the splice site hairpins (to facilitate subsequent binding of U1 snRNA) may be aided by helicases or other proteins.Ministry of Education (MOE)This work was supported by grants from Singapore Ministry of Education (MOE) Tier 1 (RG42/15 and RG152/17 to G.C. and RG33/15 to X.R.) and MOE Tier 2 (MOE2015-T2-1-028 to G.C.). This work was also supported by the National Science Center (UMO-2013/08/A/ST5/00295 to R.K. and UMO-2016/21/D/NZ5/01906 to J.L.-W.) and the Polish Ministry of Science and Higher Education under the KNOW program
    corecore